9 research outputs found

    Context-aware healthcare adaptation model for COPD diseases

    Get PDF
    Nowadays, ubiquitous computing and mobile applications are controlling all our life’s aspects, from social media and entertainment to the very basic needs like commerce, learning, government, and health. These systems have the ability to self-adapt to meet changes in their execution environment and the user’s context. In the healthcare domain, information systems have proven their efficiency, not only by organizing and managing patients’ data and information but also by helping doctors and medical experts in diagnosing disease and taking precluding procedure to avoid serious conditions. In chronic diseases, telemonitoring systems provide a way to monitor the patient’s state and biomarkers within their usual life’s routine. In this article, we are combining the healthcare telemonitoring systems with the context awareness and self-adaptation paradigm to provide a self-adaptive framework architecture for COPD patients

    Designing a Framework for Smart IoT Adaptations

    No full text
    International audienceThe Internet of Things (IoT) is the science of connecting multiple devices that coordinate to provide the service in question. IoT environments are complex, dynamic, rapidly changing and resource constrained. Therefore, proactively adapting devices to align with context fluctuations becomes a concern. To propose suitable configurations, it should be possible to sense information from devices, analyze the data and reconfigure them accordingly. Applied in the service of the environment, a fleet of devices can monitor environment indicators and control it in order to propose best fit solutions or prevent risks like over consumption of resources (e.g., water and energy). This paper describes our methodology in designing a framework for the monitoring and multi-instantiation of fleets of connected objects. First by identifying the particularities of the fleet, then by specifying connected object as a Dynamic Software Product Line (DSPL), capable of readjusting while running

    Using SPL to Develop AAL Systems Based on Self-adaptive Agents

    No full text
    Abstract One of the most important challenges of this decade is the Internet of Things (IoT) that pursues the integration of real-world objects in Internet. One of the key areas of the IoT is the Ambient Assisted Living (AAL) systems, which should be able to react to variable and continuous changes while ensuring their acceptance and adoption by users. This means that AAL systems need to work as self-adaptive systems. The autonomy property inherent to software agents, makes them a suitable choice for developing self-adaptive systems. However, agents lack the mechanisms to deal with the variability present in the IoT domain with regard to devices and network technologies. To overcome this limitation we have already proposed a Software Product Line (SPL) process for the development of self-adaptive agents in the IoT. Here we analyze the challenges that poses the development of self-adaptive AAL systems based on agents. To do so, we focus on the domain and application engineering of the self-adaptation concern of our SPL process. In addition, we provide a validation of our development process for AAL systems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore